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Abstract. It is well known that the chiral WZNW Bloch waves satisfy a quadratic classical
exchange algebra which implies the affine Kac–Moody algebra for the corresponding currents.
Here we obtain a direct derivation of the exchange algebra by inverting the symplectic form on the
space of Bloch waves, and give a completely algorithmic construction of its generalized free-field
realizations that extend the classical Wakimoto realizations of the current algebra.

1. Introduction

The Wess–Zumino–Novikov–Witten (WZNW) model [1] of conformal field theory has proved
to be a source of interesting structures that play an increasingly important role in theoretical
physics and in mathematics [2, 3]. Among these structures are the quadratic Poisson bracket
algebras [4–16] that arise from the chiral separation of the degrees of freedom in the model,
which is based on the form of the classical solution of the field equation given by

g(xL, xR) = gL(xL)g−1
R (xR). (1.1)

HerexC (C = L,R) are lightcone coordinates and thegC are quasiperiodic group-valued
fields with equal monodromies,gC(x + 2π) = gC(x)M for someM in the WZNW groupG.
The classical exchange algebras can be regarded as fundamental since the affine Kac–Moody
(KM) symmetry follows as their consequence, and help to better understand the quantum
group properties of the model (see, e.g., [17]) by means of canonical quantization [18–
20]. One should, however, note that after the chiral separation, which essentially amounts
to forgetting the equal monodromy constraint on the pair(gL, gR), the Poisson structure is
highly non-unique [14–16]. A natural choice consists in restricting the monodromyM of the
chiral WZNW fields to be diagonal, in which case the resulting classical exchange algebra
can be described as follows [11–13]. Denoting any of the chiral WZNW ‘Bloch waves’ by
b(x),

b(x + 2π) = b(x)eω ω ∈ H (1.2)

‖ Author to whom correspondence should be addressed.

0305-4470/00/050945+12$30.00 © 2000 IOP Publishing Ltd 945



946 J Balog et al

whereH is a Cartan subalgebra of the Lie algebraG of G, the exchange algebra reads as

{b(x) ⊗, b(y)} = 1

κ
(b(x)⊗ b(y))(R(ω) + 1

2 Î sign(y − x)) 0< x, y < 2π (1.3)

R(ω) = 1
2

∑
α∈8

coth
(

1
2α(ω)

)
Eα ⊗ Eα Î = Eα ⊗ Eα +Hk ⊗Hk (1.4)

whereEα,Hk is a Cartan–Weyl basis ofG andκ is a constant. For the ‘exchanger-matrix’
R(ω) to be non-singular, the monodromy parameterω has to be restricted to a domain
in H whereα(ω) /∈ i2πZ for any rootα. Notice also from (1.3) that the 2π -periodic
current

J = κb′b−1 (1.5)

indeed satisfies the KM Poisson brackets

{Tr(TaJ )(x),Tr(TbJ )(y)} = Tr([Ta, Tb]J )(x)δ(x − y) + κ Tr(TaTb)δ
′(x − y) (1.6)

whereδ(x − y) = 1
2π

∑
n∈Z ein(x−y) and Ta is any basis ofG (for the notation, see also

section 2).
Our main purpose here is to construct generalized free-field realizations of the exchange

algebra given by (1.3) that extend the Wakimoto realizations [21] of the current algebra.
The Wakimoto realizations of the KM current are well understood both at the classical and
quantized level and proved useful in many respects (see, e.g., [2, 22–25]). Their extension
to accompanying realizations of the WZNW Bloch waves have also received attention
[7, 8, 15, 24], but, except for the simplest cases, a fully algorithmic construction has not yet
appeared. At the classical level, we present such a construction in section 3. The construction
is summarized by the diagram (3.10), where all the arrows represent Poisson maps, which is
a new result for the map̂W defined by (3.18). For completeness, in section 2 we also give
a derivation of the exchange algebra. This derivation is quite different from those in [11, 13]
and is conceptually close to that of [12]. In order to obtain (1.3), we will directly invert the
symplectic form—which we use in section 3 as well—that the space of Bloch waves inherits
from the full WZNW phase space.

2. Derivation of the exchange algebra of Bloch waves

Throughout the paper, letG be either a complex simple Lie algebra or its normal real form, and
G a corresponding Lie group. Denote bỹG (respectivelỹG) the loop group (algebra) consisting
of the 2π -periodic, smooth,G-valued (G-valued) functions on the real lineR. Choose a Cartan
subalgebraH ⊂ G that admits the root space decomposition

G = H⊕
∑
α∈8
Gα (2.1)

and an associated basisHk ∈ H, Eα ∈ Gα normalized by Tr(EαE−α) = 2/|α|2, where Tr
denotes an invariant scalar product onG. By using this basis anyA ∈ G can be decomposed as

A = A0 +Ar with A0 ∈ H Ar =
∑
α∈8

Eα Tr(EαA) Eα := 1
2|α|2E−α. (2.2)

Fix an open domainA ⊂ H which has the properties thatα(ω) /∈ i2πZ for any root,
α ∈ 8 ⊂ H∗, and the mapA 3 ω 7→ eω ∈ G is injective.
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Let us now defineMG
Bloch by

MG
Bloch := {b ∈ C∞(R,G) | b(x + 2π) = b(x)eω, ω ∈ A ⊂ H} (2.3)

and endow it with the differential 2-form

�
G,κ
Bloch(b) = − 1

2κ

∫ 2π

0
dx Tr

(
b−1 db

) ∧ (b−1 db
)′ − 1

2κ Tr
(
(b−1 db)(0) ∧ dω

)
. (2.4)

It is easy to check that d�G,κBloch = 0 and below we shall see that this formula actually defines
a symplectic form onMG

Bloch. Note that�G,κBloch can be obtained from the natural symplectic
form on the space of classical solutions of the WZNW model, as explained in [12, 14, 15].

It will be convenient to parametrizeb ∈MG
Bloch as

b(x) = h(x) exp(xω̄) ω̄ := ω

2π
(2.5)

whereω ∈ A andh ∈ G̃. This one-to-one parametrization yields the identification

MG
Bloch = G̃×A = {(h, ω)}. (2.6)

Correspondingly, a vector fieldX onMG
Bloch is parametrized by

X = (Xh,Xω) Xh ∈ ThG̃ Xω ∈ TωA ' H (2.7)

with h−1Xh ∈ TeG̃ ' G̃. By regardingω andh as evaluation functions onMG
Bloch, we may

writeXω = X(ω) andXh(x) = X(h(x)). Equivalently,X can be characterized by its action
onb(x),

b−1(x)X(b(x)) = e−xω̄h−1(x)X(h(x))exω̄ + xX(ω̄) (2.8)

where the functionb−1(x)X(b(x)) onR is uniquely determined by its restriction to [0, 2π ].
In general, the derivativeX(F) of a functionF onMG

Bloch is defined by using the fact that
any vector is the velocity to a smooth curve. That is, if the value of the vector fieldX at
b ∈MG

Bloch coincides with the velocity to the curveγ (x, t) at t = 0, γ (x, 0) = b(x), then for
a differentiable functionF we haveX(F)[b] = d

dt F [γ (x, t)]|t=0.
A functionF onMG

Bloch is henceforth calledadmissibleif its derivative with respect to
any vector fieldX exists and has the form

X(F) = 〈dF,X〉 = Tr(dωFXω) +
∫ 2π

0
dx Tr

(
(h−1dhF )(h

−1Xh)
)

(2.9)

where

dF = (dhF, dωF ) with dhF ∈ T ∗h G̃ dωF ∈ T ∗ωA (2.10)

is the exterior derivative ofF . In this definition we identifyT ∗ωAwithH by means of the scalar
product ‘Tr’ and also identifyT ∗e G̃with G̃ by the scalar product

∫ 2π
0 Tr(· , ·), whereby we have

h−1dhF ∈ T ∗e G̃ = G̃. It is clear that the local evaluation functionsMG
Bloch 3 b 7→ bkl(x)

(with the matrix elementsbkl taken in some representation ofG) are differentiable but not
admissible, while, for example, the Fourier coefficients of the current components Tr(TaJ ) as
well as the components ofω yield admissible functions. It is also worth noting that the matrix
elements of the non-localG-valued function given by the path-ordered exponential integral of
the currentJ = κb′b−1 over a period are, in fact, not admissible, but the trace of any of the
powers of this (Wilson loop) function is admissible, since it can be expressed as a function of
ω alone.
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We now wish to show that�G,κBloch is symplectic in the sense that it permits one to associate
a unique Hamiltonian vector field,YF , with any admissible function,F . The defining property
of YF is that it must satisfy

〈dF,X〉 = X(F) = �G,κBloch(X, Y
F ) (2.11)

for any vector fieldX. In order to determineYF from this equality, we first point out that in
terms of the variables(h, ω)

�
G,κ
Bloch(h, ω) = − 1

2κ

∫ 2π

0
dx Tr

(
(h−1 dh) ∧ (h−1 dh)′

+2ω̄(h−1 dh) ∧ (h−1 dh)− 2 dω̄ ∧ h−1 dh
)
. (2.12)

It follows that

�
G,κ
Bloch(X, Y

F ) = −κ
∫ 2π

0
dx Tr

(
(h−1YF (h))′h−1X(h) + ω̄[h−1X(h), h−1YF (h)]

+YF (ω̄)h−1X(h)−X(ω̄)h−1YF (h)
)
. (2.13)

This implies the following equations forYF :(
h−1YF (h)

)′
+ [h−1YF (h), ω̄] + YF (ω̄) = −1

κ
h−1dhF (2.14)∫ 2π

0
dx (h−1YF (h))0 = 2π

κ
dωF. (2.15)

GivendhF anddωF , we will next findb−1YF (b).
On account of (2.8), equation (2.14) is, in fact, equivalent to(

b−1YF (b)
)′
(x) = −1

κ
e−ω̄x(h−1dhF )(x)e

ω̄x (2.16)

the solution of which is given by

b−1(x)Y F (b(x)) = b−1(0)Y F (b(0))− 1

κ

∫ x

0
dy e−ω̄y(h−1dhF )(y)e

ω̄y . (2.17)

Hence the only non-trivial problem is to determine the initial value

QF := b−1(0)Y F (b(0)) = h−1(0)Y F (h(0)). (2.18)

To this end, note from (2.8) that

YF (ω) = eωb−1(2π)YF (b(2π))e−ω − b−1(0)Y F (b(0)). (2.19)

By using (2.17), the Cartan part of (2.19) requires that

YF (ω) = −1

κ

∫ 2π

0
dx (h−1dhF )

0(x) (2.20)

while the root part of (2.19) gives

e−ωQr
Feω −Qr

F = −
1

κ

∫ 2π

0
dx e−ω̄x(h−1dhF )

r(x)eω̄x (2.21)

whereQF = Q0
F +Qr

F according to (2.2). Then (2.21) completely determinesQr
F as

Qr
F =

1

κ

∑
α∈8

Eα

1− e−α(ω)

∫ 2π

0
dx e−α(ω̄)x Tr

(
(h−1dhF )(x)E

α
)
. (2.22)
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As for the remaining unknown,Q0
F , equation (2.15) with (2.8) and (2.19) leads to the result

2πκQ0
F = 2πdωF − π

∫ 2π

0
dx (h−1dhF )

0(x) +
∫ 2π

0
dx
∫ x

0
dy (h−1dhF )

0(y). (2.23)

In conclusion, we have found that the Hamiltonian vector fieldb−1YF (b) is uniquely
determined and is explicitly given by (2.17) withb−1(0)Y F (b(0)) = QF in (2.22) and (2.23).
In the derivation ofYF we have crucially used thatω is restricted to the domainA ⊂ H. At
the excluded points ofH some denominators in (2.22) may vanish, whereby�

G,κ
Bloch becomes

singular.
The Poisson bracket of two ‘smooth enough’ admissible functionsF1 andF2 onMG

Bloch
is determined by the formula

{F1, F2} = YF2(F1) = �G,κBloch(Y
F2, Y F1). (2.24)

We now explain that in a certain sense this Poisson bracket is encoded by the classical exchange
algebra (1.3). For this purpose we consider functions of the form

Fφ(h, ω) =
∫ 2π

0
dx Tr(φ(x)b3(x)) (2.25)

whereb3(x) is taken in a representation†3ofGandφ(x) is a smooth, matrix-valued, smearing
function in that representation. It is easy to check thatFφ is admissible if

φ(k)(0) = φ(k)(2π) = 0 ∀k = 0, 1, 2 . . . (2.26)

and the exterior derivative ofFφ at (h, ω) is given by

(dωFφ)(h, ω) = 1

2π

∑
k

Hk Tr

(
H3
k

∫ 2π

0
dx (xφ(x)b3(x))

)
(2.27)

(
(h−1dhFφ)(h, ω)

)
(x) =

∑
a

T a Tr
(
φ(x)h3(x)T 3a exω̄

3
)

for x ∈ [0, 2π ]. (2.28)

We here denote byHk, Hk andTa, T a dual bases ofH andG, respectively. The last formula
extends to a smooth 2π -periodic function on the real line precisely if (2.26) is satisfied. The
Hamiltonian vector fieldYFφ is then found to be(
b−1YFφ (b)

)
(x) = QFφ −

1

κ

∑
a

T a
∫ x

0
dy Tr(φ(y)b3(y)T 3a ) for x ∈ [0, 2π ]

(2.29)

whereQFφ is determined as described above. By combining the preceding formulae, one can
verify that

{Fχ, Fφ} = �G,κBloch(Y
Fφ , Y Fχ ) =

∫ 2π

0

∫ 2π

0
dx dy Tr12

(
χ(x)⊗ φ(y){b3(x) ⊗, b3(y)}) (2.30)

holds for anyφ, χ subject to (2.26)provided that one has{
b3(x) ⊗, b3(y)

} = 1

κ

(
b3(x)⊗ b3(y))(R(ω) + 1

2 Î sign(y − x))3 0< x, y < 2π

(2.31)

† We use the notation Tr= c3 tr3, where tr3 is the trace over the representation3 andc3 is a normalization factor
that makesc3 tr(A3B3) independent of3 for A,B ∈ G.
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with R(ω) given by (1.4). Since the representation3 is arbitrary, this can be symbolically
written in the form (1.3). It is clear that the local formula (1.3) completely encodes the Poisson
brackets sinceYFφ can be recovered if the right-hand side of (2.30) is given.

Since the currentJ = κb′b−1 and the monodromy parameterω are functions ofb, their
Poisson brackets can be derived from the exchange algebra (1.3). We can also determine the
Hamiltonian vector fields of the functionsωk := Tr(ωHk) andFµ := ∫ 2π

0 dx Tr
(
µ(x)J (x)

)
,

whereµ is a 2π -periodic, smooth,G-valued test function, directly from (2.14) and (2.15) as

Yωk (b(x)) = 1

κ
b(x)Hk YFµ

(
b(x)

) = µ(x)b(x). (2.32)

This implies thatJ generates the KM Poisson brackets (1.6), and the current algebra is
centralized by the functions ofω.

It is worth remarking that the Jacobi identity of the Poisson bracket (1.3) is equivalent to
the following equation for the exchanger-matrix:

[R12(ω),R23(ω)] +
∑
k

Hk
1
∂

∂ωk
R23(ω) + cycl. perm.= − 1

4f
c

ab T
a ⊗ T b ⊗ Tc (2.33)

where [Ta, Tb] = f c
ab Tc and Tr(TaT b) = δba . This is a dynamical generalization of the

modified classical Yang–Baxter equation, and it has been verified in [11] thatR(ω) in (1.4)
satisfies it. This equation appears in other contexts as well [27–29] and was recently studied,
for example, in [30–32].

The classical exchange algebra (1.3) is also valid for a compact simple Lie group,K,
obtained as a real form of a complex simple Lie group,G (likeK = SU(n) ⊂ SL(n,C) = G).
To see this, letK ⊂ G be a compact real form of a complex simple Lie algebraG. One can
realizeK as

K = spanR{iHαk , F +
α , F

−
α | αk ∈ 1,α ∈ 8+} (2.34)

with

F−α = 1
2|α|(Eα − E−α) F +

α = 1
2i|α|(Eα +E−α) (2.35)

whereHαk (αk ∈ 1), E±α (α ∈ 8+) form a Chevalley basis ofG corresponding to the set of
simple roots,1, and positive roots,8+ (see, e.g., [33]). IfA is now a regular domain in the
Cartan subalgebra ofK, we have

A 3 ω = iτ = i
∑
k

τ kHαk with τ k ∈ R. (2.36)

Also using that cot(y) = i coth(iy),R(ω) in (1.4) can be rewritten as

R(iτ) =
∑
α∈8+

1
4|α|2 coth

(
1
2iα(τ)

)
Eα ∧ E−α = 1

2

∑
α∈8+

cot
(

1
2α(τ)

)
F +
α ∧ F−α . (2.37)

This means that ifω = iτ , then ther-matrix on the right-hand side of (1.3) lies inK ⊗ K.
Therefore, equation (1.3) with (1.4) can be consistently applied toK-valued Bloch waves.
This can be shown to be the correct result in the compact case by deriving the exchange
algebra similarly as above starting with�K,κBloch. However, the free-field realizations discussed
subsequently are valid only in the case of a complex Lie algebra and its normal real form.
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3. Generalized Wakimoto realizations

At the classical level the generalized Wakimoto realizations of the current algebra are given
by certain Poisson maps

W : (Ĝ0)
∗
κ × T ∗G̃+ −→ (Ĝ)∗κ . (3.1)

Here(Ĝ)∗κ denotes the space ofG-valued currents,

(Ĝ)∗κ = {J ∈ C∞(R,G) | J (x + 2π) = J (x)} (3.2)

equipped with the Poisson bracket in (1.6). The other notations are explained below. By
elaborating the idea outlined in [26], we will then prove thatW can be lifted to a Poisson (in
fact, symplectic) map

Ŵ :MG0
Bloch× T ∗G̃+ −→MG

Bloch (3.3)

which gives a realization ofG-valued Bloch waves in terms ofG0-valued Bloch waves and
free fields.

Let G = ∑n∈Z Gn be an integral gradation ofG. DefineG+ := ⊕n>0Gn, G− := ⊕n<0Gn.
Denote byG0,± ⊂ G the connected subgroups corresponding toG0,±. One can associate a
mapW (3.1) with the parabolic subalgebra(G+ + G0) ⊂ G as follows. One of the constituents
is the space

(Ĝ0)
∗
κ = {i0 ∈ C∞(R,G0) | i0(x + 2π) = i0(x)} (3.4)

with the Poisson bracket

{Tr(tki0)(x),Tr(tli0)(y)} = Tr([tk, tl ]i0)(x)δ(x − y) + κ Tr(tktl)δ
′(x − y) (3.5)

wheretk denotes a basis ofG0 and Tr is the restriction of the scalar product ofG to G0. To
describe the other factor in (3.1), consider the manifoldsG̃+ and G̃− whose elements are
smooth, 2π -periodic functions onR with values inG+ andG−, respectively. By means of left
translations, identify the cotangent bundle ofG̃+ as

T ∗G̃+ = G̃+ × G̃− = {(η+, i−) | η+ ∈ G̃+, i− ∈ G̃−}. (3.6)

The canonical symplectic form onT ∗G̃+ is given by

�T ∗G̃+
= −d

∫ 2π

0
dx Tr(i−η−1

+ dη+) (3.7)

and the corresponding Poisson brackets are encoded by

{Tr(V αi−)(x),Tr(V βi−)(y)} = Tr([V α, V β ]i−)(x) δ(x − y)
{Tr(V αi−)(x), η+(y)} = η+(x)V

α δ(x − y) {η+(x)
⊗, η+(y)} = 0

(3.8)

whereV α is a basis ofG+. The mapW is defined by the formula

W : (Ĝ0)
∗
κ × T ∗G̃+ 3 (i0, η+, i−) 7→ J = η+(i0 − i−)η−1

+ + κη′+η
−1
+ ∈ (Ĝ)∗κ . (3.9)

One can verify [25] that this is a Poisson map, i.e. the Poisson bracket ofJ in (1.6) follows
from the Poisson brackets of the constituents(i0, η+, i−).



952 J Balog et al

Our purpose now is to complete the construction of the following commutative diagram:

MG0
Bloch× T ∗G̃+

ŴH⇒ MG
Bloch

D0×id↓ ↓D

(Ĝ0)
∗
κ × T ∗G̃+

W−→ (Ĝ)∗κ .

(3.10)

The mapD operates according toD : b 7−→ J = κb′b−1. MG0
Bloch is the space ofG0-valued

Bloch waves with regular, diagonal monodromy,

MG0
Bloch = {η0 ∈ C∞(R,G0) | η0(x + 2π) = η0(x)e

ω, ω ∈ A ⊂ H} (3.11)

with the symplectic form

�
G0,κ
Bloch(η0) = − 1

2κ

∫ 2π

0
dx Tr

(
η−1

0 dη0
) ∧ (η−1

0 dη0
)′ − 1

2κ Tr
(
(η−1

0 dη0)(0) ∧ dω
)
. (3.12)

Since the same domainA is used in (2.3) and (3.11),MG0
Bloch is a symplectic submanifold of

MG
Bloch. The mapD0 sendsη0 to i0 = κη′0η−1

0 ∈ (Ĝ0)
∗
κ . We have seen that the simple arrows

in (3.10) are Poisson maps. The formula of the missing map

Ŵ :MG0
Bloch× T ∗G̃+ 3 (η0, η+, i−) 7−→ b ∈MG

Bloch (3.13)

can be found from the equationD ◦ Ŵ = W ◦ (D0 × id), which requires that

κb′b−1 = η+(κη
′
0η
−1
0 − i−)η−1

+ + κη′+η
−1
+ . (3.14)

A solution forb exists that admits a generalized Gauss decomposition. In fact,

b(x) = b+(x)b0(x)b−(x) with b±,0(x) ∈ G±,0 (3.15)

is a solution of (3.14) if

b+ = η+ b0 = η0 and κb′−b
−1
− = −η−1

0 i−η0. (3.16)

The general solution of the differential equation forb− can be written in terms of the particular
solutionbP− defined bybP−(0) = 1 asb−(x) = bP−(x)S with an arbitraryS ∈ G−. (Note
thatbP−(x) is nothing but the path-ordered exponential integral of−η−1

0 i−η0/κ over [0, x].)
The constantS = b−(0) has to be determined from the condition thatb should have diagonal
monodromy. One finds thatb has diagonal monodromy, indeed it satisfiesb(x+2π) = b(x)eω,
if and only if

e−ωSeω = bP−(2π)S. (3.17)

Inspecting this equation grade by grade using a parametrizationS = es , s ∈ G− and the fact
thatω ∈ A, it is not difficult to see that it has a unique solution forS as a function ofω and
bP−(2π). DeterminingS in the above manner, we now define the map

Ŵ :MG0
Bloch× T ∗G̃+ 3 (η0, η+, i−) 7−→ b = η+η0b

P
−S ∈MG

Bloch (3.18)

which makes the diagram in (3.10) commutative.
The main result of this paper is the following statement:the mapŴ defined in (3.18) is

symplectic, that is,

(Ŵ ∗�G,κBloch)(η0, η+, i−) = �G,κBloch(b = η+η0b
P
−S) = �G0,κ

Bloch(η0) +�T ∗G̃+
(η+, i−). (3.19)
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To prove this, let us restrict the symplectic form�G,κBloch in (2.4) to the domain ofMG
Bloch

whose elements are decomposable in the form

b = b+b0b− with b0,± ∈ C∞(R,G0,±) (3.20)

b+(x + 2π) = b+(x) b0(x + 2π) = b0(x)e
ω b−(x + 2π) = e−ωb−(x)eω. (3.21)

A straightforward calculation that uses partial integration and standard properties of the trace
yields that in this domain

�
G,κ
Bloch(b) = − 1

2κ

∫ 2π

0
dx Tr

(
b−1

0 db0 ∧ (b−1
0 db0)

′ + 2(b0b
′
−b
−1
− b
−1
0 )(b−1

+ db+ ∧ b−1
+ db+)

)
+κ
∫ 2π

0
dx Tr

(
b0b−(b−1

− db−)′b−1
− b
−1
0 ∧ b−1

+ db+

+[db0 b
−1
0 , b0b

′
−b
−1
− b
−1
0 ] ∧ b−1

+ db+
)

− 1
2κ Tr

(
(b−1

0 db0)(0) ∧ dω
)− 1

2κ Tr
((
b−1
− b
−1
0 (b−1

+ db+)b0b−
)
(0) ∧ dω

)
− 1

2κ
[
Tr
(
b−1
− db− ∧ b−1

− b
−1
0 (b−1

+ db+)b0b−
)]2π

0 . (3.22)

The last two terms cancel, and also combining the other terms we obtain

�
G,κ
Bloch(b) = − 1

2κ

∫ 2π

0
dx Tr

(
b−1

0 db0
) ∧ (b−1

0 db0
)′ − 1

2κ Tr
(
(b−1

0 db0)(0) ∧ dω
)

−d
∫ 2π

0
dx Tr

(
(−κb0b

′
−b
−1
− b
−1
0 )b−1

+ db+
)
.

The definition ofŴ says that the image of(η0, η+, i−) ∈MG0
Bloch×T ∗G̃+ is b ∈MG

Bloch which
has the form (3.20) withb0 = η0, b+ = η+ andb− specified by the monodromy condition
in (3.21) together with−κη0b

′
−b
−1
− η
−1
0 = i−. Taking this into account, the last equation

immediately implies that

(Ŵ ∗�G,κBloch)(η0, η+, i−) = �G0,κ
Bloch(η0)− d

∫ 2π

0
dx Tr(i−η−1

+ dη+) (3.23)

as required by (3.19).
Since a symplectic map is always a Poisson map as well,Ŵ provides us with a

realization of the monodromy-dependent exchange algebra (1.3) of theG-valued Bloch waves
in terms of the analogous exchange algebra of theG0-valued Bloch waves and the Poisson
algebra ofT ∗G̃+ given by (3.8). Of course,T ∗G̃+ can also be parametrized by canonical
free fields. For this, consider some global coordinatesqα on G+ and define the matrix
Nαβ(q) = Tr

(
Vβη

−1
+ ∂η+/∂q

α
)
, whereVβ is a basis ofG− dual to the basisV α of G+. By

introducing 2π -periodic canonical free fieldsqα(x), pβ(y),

{qα(x), pβ(y)} = δαβ {qα(x), qβ(y)} = {pα(x), pβ(y)} = 0 (3.24)

the Poisson brackets in (3.8) are realized byη+(x) = η+(q(x)) and

i−(x) = −
∑
αβ

(N−1)αβ(q)pβVα (3.25)



954 J Balog et al

whereby�T ∗G̃+
= ∫ 2π

0 dx (dpα ∧ dqα). The mapŴ gives a true free-field realization in the
principal case, for whichG0 = H is Abelian. In this caseη0 is the exponential of aH-valued
free scalar field,9(x), i.e.η0(x) = e9(x) with 9(x + 2π) = 9(x) + ω and

{Tr(Hk9)(x),Tr(Hl9)(y)} = 1

2κ
Tr(HkHl) sign(y − x) for 0< x, y < 2π. (3.26)

ForG = SL(2) the Wakimoto realization of Bloch waves was already described in [7, 15] and
some other special cases can be found in [24]. These results are in agreement with our general
construction of the map̂W in (3.18).

Finally, we illustrate the formula in (3.18) by a series of simple examples for the group
G = SL(n) (either real or complex). The parabolic subalgebras ofsl(n) are associated with
the partitions ofn, and we consider the two-block cases (the mapW in (3.1) is described in
these cases in [25]). That is to say, we let the underlying integral gradation ofG = sl(n) be
defined by the eigenvalues of adQ with a diagonal matrix

Q = 1

n
diag

(
n21n1,−n11n2

)
n = n1 + n2. (3.27)

In this caseG± are Abelian subalgebras, which leads to a simplification of the formulae. In
particular, we can introduce the convenient parametrizations

η+ =
[

1n1 q

0 1n2

]
i− = −

[
0n1 0
p 0n2

]
(3.28)

whereq(x) andp(x) aren1× n2 andn2 × n1 matrices, whose entries satisfy

{qab(x), pcd(y)} = δadδbcδ(x − y). (3.29)

In terms of the parametrizations

η0 =
[
ηu 0
0 ηd

]
bP− =

[
1n1 0
B 1n2

]
(3.30)

the solution of the differential equation in (3.16) is then found to be

B(x) = 1

κ

∫ x

0
dy

(
η−1
d pηu

)
(y). (3.31)

Furthermore, if we now denote

S =
[

1n1 0
σ 1n2

]
ω = diag(ω1, ω2, . . . , ωn) (3.32)

then equation (3.17) is explicitly solved as

σab = Bab(2π)

exp(ωb − ωa+n1)− 1
16 a 6 n2 16 b 6 n1. (3.33)

Combining these equations, (3.18) yields a realization of theSL(n)-valued Bloch waveb in
terms of the fieldsq, p andη0. By subsequently using a similar Wakimoto realization forη0,
and so on, one can iteratively build up a complete free-field realization ofb. Incidentally,η0

can be written in the alternative form

η0 = eQϕ
[
η̃u 0
0 η̃d

]
(3.34)

where eQϕ(x), η̃u(x) and η̃d (x) areU(1)-, SL(n1)- andSL(n2)-valued independent Bloch
waves.
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The Wakimoto realizations of the affine KM algebras in generalized Fock spaces, at the
level of vertex algebras as opposed to the above Poisson algebras, have many applications
in conformal field theory [2, 22, 23]. An explicit formula for such realizations of the current
J was derived in [25] by quantizing the expression (3.9). It would be very interesting to
also quantize (3.18). The exchange algebra of the resulting vertex operators should contain
the quantized version of ther-matrixR(ω) which has been constructed recently for all Lie
algebras in a universal manner [34]. Another open problem is to find an analogue of the rather
simple construction of the Wakimoto realizations presented here and in [25] for the case of
q-deformed affine KM algebras. We hope to return to these questions in the future.
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