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Abstract. It is well known that the chiral WZNW Bloch waves satisfy a quadratic classical
exchange algebra which implies the affine Kac—Moody algebra for the corresponding currents.
Here we obtain a direct derivation of the exchange algebra by inverting the symplectic form on the
space of Bloch waves, and give a completely algorithmic construction of its generalized free-field
realizations that extend the classical Wakimoto realizations of the current algebra.

1. Introduction

The Wess—Zumino—Novikov-Witten (WZNW) model [1] of conformal field theory has proved

to be a source of interesting structures that play an increasingly important role in theoretical
physics and in mathematics [2, 3]. Among these structures are the quadratic Poisson bracket
algebras [4-16] that arise from the chiral separation of the degrees of freedom in the model,
which is based on the form of the classical solution of the field equation given by

g(xp, xg) = gr.(x1)gr (xr). (1.1)

Herexc (C = L, R) are lightcone coordinates and the are quasiperiodic group-valued
fields with equal monodromiegc¢ (x + 27) = gc(x) M for someM in the WZNW groupG.

The classical exchange algebras can be regarded as fundamental since the affine Kac—Moody
(KM) symmetry follows as their consequence, and help to better understand the quantum
group properties of the model (see, e.g., [17]) by means of canonical quantization [18—
20]. One should, however, note that after the chiral separation, which essentially amounts
to forgetting the equal monodromy constraint on the [pgir, gz), the Poisson structure is
highly non-unique [14-16]. A natural choice consists in restricting the monodidmythe

chiral WZNW fields to be diagonal, in which case the resulting classical exchange algebra
can be described as follows [11-13]. Denoting any of the chiral WZNW ‘Bloch waves' by
b(x),

b(x +21) = b(x)€e” weH (1.2)
|I Author to whom correspondence should be addressed.
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whereH is a Cartan subalgebra of the Lie algebraf G, the exchange algebra reads as
1 AL
(b(x) 2 b1} = —(b(x) ® () (R(@) + 31 8ign(y —=x)) 0 <x,y <27 (1.3)

R(w) =3 coth(3e(w))Ey ® E* [=E,®E"+H ® H" (1.4)

acd

whereE,, H; is a Cartan—Weyl basis @f and« is a constant. For the ‘exchangenatrix’
R(w) to be non-singular, the monodromy parametehas to be restricted to a domain
in H wherea(w) ¢ 277 for any roota. Notice also from (1.3) that then2periodic
current

J=«bb! (1.5)
indeed satisfies the KM Poisson brackets
{Te(T ) (x), Te(Tp (D)} = Tr([ Ty, Tl ) (x)8(x — y) + & Tr(T,T)8 (x — y) (1.6)

wheres(x — y) = % <z "= and T, is any basis oy (for the notation, see also
section 2).

Our main purpose here is to construct generalized free-field realizations of the exchange
algebra given by (1.3) that extend the Wakimoto realizations [21] of the current algebra.
The Wakimoto realizations of the KM current are well understood both at the classical and
quantized level and proved useful in many respects (see, e.g., [2,22-25]). Their extension
to accompanying realizations of the WZNW Bloch waves have also received attention
[7,8, 15, 24], but, except for the simplest cases, a fully algorithmic construction has not yet
appeared. At the classical level, we present such a construction in section 3. The construction
is summarized by the diagram (3.10), where all the arrows represent Poisson maps, which is
a new result for the mapT/ defined by (3.18). For completeness, in section 2 we also give
a derivation of the exchange algebra. This derivation is quite different from those in [11, 13]
and is conceptually close to that of [12]. In order to obtain (1.3), we will directly invert the
symplectic form—which we use in section 3 as well—that the space of Bloch waves inherits
from the full WZNW phase space.

n

2. Derivation of the exchange algebra of Bloch waves

Throughout the paper, Iétbe either a complex simple Lie algebra or its normal real form, and
G acorresponding Lie group. Denote &y(respectivel\y) the loop group (algebra) consisting
of the 2r-periodic, smoothG-valued G-valued) functions on the real lifie Choose a Cartan
subalgebra{ c G that admits the root space decomposition

G=H®Y Ga (2.1)

acd

and an associated bagi& € H, E, € G, normalized by T(E,E_,) = 2/|«|?, where Tr
denotes an invariant scalar product@rBy using this basis ang € G can be decomposed as

A=A"+A" with AeH A" = Z E,Tr(E*A) E*:= 3|a|’E_,. (2.2)
aed

Fix an open domaind C H which has the properties that(w) ¢ 277 for any root,
a € ® C H*, and the mapd > w > €” € G is injective.
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Let us now defineV(§,, ., by
MGioen = b € C°(R, G) | b(x +21) = b(x)€”, 0 € A C H} (2.3)

and endow it with the differential 2-form

2
QGe by = =3k [ dxTr(b7tdb) A (b1 db) — Lk Tr (b~ 2 db)(0) A dw). (2.4)
0

It is easy to check that@S*,, = 0 and below we shall see that this formula actually defines

a symplectic form on\§,,. Note that25:%, can be obtained from the natural symplectic
form on the space of classical solutions of the WZNW model, as explained in [12, 14, 15].
It will be convenient to parametrizee Mg, as

w

b(x) = h(x) exp(xd) @ = > (2.5)
wherew € A andh € G. This one-to-one parametrization yields the identification

MGoch = G x A= {(h, )} (2.6)
Correspondingly, a vector field on M§, ., is parametrized by

X = (Xp, Xo) X, € T,G X, e T,A~H (2.7)

with h=1X, € T,G ~ G. By regarding» and/ as evaluation functions a9, we may
write X, = X (w) and X, (x) = X (h(x)). Equivalently,X can be characterized by its action
onb(x),

b )X (b(x)) = € h L (x) X (h(x))e"® + x X (&) (2.8)

where the functio1(x) X (b(x)) on R is uniquely determined by its restriction to, [pr].
In general, the derivativer (F) of a functionF on Mg, is defined by using the fact that
any vector is the velocity to a smooth curve. That is, if the value of the vector Xiedd
be Mgloch coincides with the velocity to the curye(x, t) att = 0, y (x, 0) = b(x), then for
a differentiable functiorF we haveX (F)[b] = %F[y(x, H]li=o-

A function F on M§,.., is henceforth calle@dmissiblef its derivative with respect to
any vector fieldX exists and has the form

2

X(F) = (dF, X) = Tr(d,FX,,) + dx Tr ((h~tdy F)(h™ X)) (2.9)
0

where
dF = (dyF.d,F) with dyF € T)G d,F € T} A (2.10)

is the exterior derivative af . In this definition we identifyT*.4 with by means of the scalar
product “Tr’ and also identifif* G with G by the scalar produgf.” Tr(-, -), whereby we have
h=ld,F € Te*CN} = G. ltis clear that the local evaluation functiond§., > b — bu(x)

(with the matrix elements,; taken in some representation G are differentiable but not
admissible, while, for example, the Fourier coefficients of the current componefits/Tias

well as the components afyield admissible functions. Itis also worth noting that the matrix
elements of the non-loc@l-valued function given by the path-ordered exponential integral of
the current/ = «b'b~* over a period are, in fact, not admissible, but the trace of any of the
powers of this (Wilson loop) function is admissible, since it can be expressed as a function of
o alone.
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We now wish to show thaR§,~, is symplectic in the sense that it permits one to associate
a unique Hamiltonian vector field,”, with any admissible functiork. The defining property
of Y is that it must satisfy

(dF, X) = X(F) = Qg (X, YD) (2.11)
for any vector fieldX. In order to determin&’ from this equality, we first point out that in
terms of the variable&:, w)

2
QS (h, ) = —%Kf dx Tr((h~tdh) A (h " dh)’
0

+2(h ™t dh) A (h~tdh) — 2dd> A k™t dh). (2.12)

It follows that
2
Qe X, YTy =~k [ dx Tr(( Y)Y R X (h) + @[h X (), =Y F ()]
0

+YF (@)X (h) — X (@)h YT (h)). (2.13)
This implies the following equations faf’:

, 1
(WY () + [ Y (h), o] + YT (&) = —=h~'d, F (2.14)

K

21
dx (h~YF(h)° = gdwF. (2.15)
K

0

Givend, F andd, F, we will next findb=1Y ¥ (b).
On account of (2.8), equation (2.14) is, in fact, equivalent to

B 1)) () = —}e*“_”‘ (hYd, F)(x)e™™ (2.16)
K
the solution of which is given by
1 - -
b)Y (b(x)) = b1 O)YF (b(0) — = f dy e (h~td, F)(y)e™. (2.17)
K Jo
Hence the only non-trivial problem is to determine the initial value
Qr = b2 0)Y T (b(0)) = h*0)YT (h(0)). (2.18)
To this end, note from (2.8) that
Y (w) = b r2m)YF (b(2n))e ™ — b~10)YF (b(0)). (2.19)
By using (2.17), the Cartan part of (2.19) requires that
2
Yf(w) = 1 dx (b, F)°(x) (2.20)
K Jo
while the root part of (2.19) gives
1 [ . -
evQLe —Qfh=—= / dx e (h~1d, F)" (x)e™* (2.21)
K Jo

whereQr = Q(} + Q' according to (2.2). Then (2.21) completely determiggsas

" 1 —E 2 —a(®)x — o
Or =12 T-eww | dve @XTr ((hYdy F) () E*). (2.22)

acd
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As for the remaining unknowrQ?, equation (2.15) with (2.8) and (2.19) leads to the result

2 2 x
21k Q% =2nd,F — 7 / dx (h~2d, F)°(x) + / dx / dy (h"Yd, F)°(y). (2.23)
0 0 0

In conclusion, we have found that the Hamiltonian vector figtdY © (b) is uniquely
determined and is explicitly given by (2.17) wii*(0)Y 7 (b(0)) = QF in (2.22) and (2.23).
In the derivation ofr ' we have crucially used that is restricted to the domaid c H. At
the excluded points of some denominators in (2.22) may vanish, whergfi.,, becomes
singular.

The Poisson bracket of two ‘smooth enough’ admissible functfgrsnd £, on M§,.,
is determined by the formula

{F1, B2} = Y2 (Fy) = Q5 (Y2, vy, (2.24)

We now explain that in a certain sense this Poisson bracket is encoded by the classical exchange
algebra (1.3). For this purpose we consider functions of the form

21

Fy(h, 0) = dx Tr(¢ (x)b™ (x)) (2.25)
0

whereb? (x) is taken in a representatiorfof G andg (x) is a smooth, matrix-valued, smearing
function in that representation. It is easy to check #ais admissible if

P00 =P 27)=0 Vk=0,1,2... (2.26)

and the exterior derivative df, at (i, w) is given by

1 2
(do Fy) (h, @) = 5— Xk:H" Tr <HkA ; dx (xd)(x)bA(x))) (2.27)
((h Yy Fy)(h, ) (x) = Y TTr <¢(x)hA(x)TaAe"“_’A> for xe[0,27]. (2.28)

We here denote b¥l;, H* andT,, T¢ dual bases of andg, respectively. The last formula
extends to a smoothr2periodic function on the real line precisely if (2.26) is satisfied. The
Hamiltonian vector field’ *+ is then found to be

('Y b)) (%) = Qr, — %Z ¢ /O TGO TS for xe[0,27]

(2.29)

whereQ, is determined as described above. By combining the preceding formulae, one can
verify that

2r p21
{Fy. Fy} = QY. YF) = /0 ; dx dy Triz (x (x) ® (N {b" (x) € ™ (»)}) (2.30)
holds for anyp, x subject to (2.26provided that one has
(P (x) @ b ()} = l(bA(x) ® b*(»))(R(w) + 31 sign(y — x))A O<x,y<2n

K
(2.31)

T We use the notation = ¢y trp, where tr, is the trace over the representatidrandc, is a normalization factor
that makes:, tr(A B) independent ol for A, B € G.
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with R(w) given by (1.4). Since the representatians arbitrary, this can be symbolically
written in the form (1.3). Itis clear that the local formula (1.3) completely encodes the Poisson
brackets sinc& 7+ can be recovered if the right-hand side of (2.30) is given.

Since the currenf = «b’b~1 and the monodromy parameterare functions ob, their
Poisson brackets can be derived from the exchange algebra (1.3). We can also determine the
Hamiltonian vector fields of the functions, := Tr(wH;) andF, = 02" dx Tr (u(x)J (x)),
wherepu is a 2r-periodic, smoothg-valued test function, directly from (2.14) and (2.15) as

1
Y (b)) = —b(x) Hy Y7r(b(x)) = p(x)b(x). (2.32)

This implies that/ generates the KM Poisson brackets (1.6), and the current algebra is
centralized by the functions af.

It is worth remarking that the Jacobi identity of the Poisson bracket (1.3) is equivalent to
the following equation for the exchangematrix:

0
[Ri2(w), Raz(w)] + Z H:{_(M'R,23(w) +cycl.perm=—31f ‘T ®@T" ®T. (2.33)
k

where [, Ty] = £,,°T. and T(T,T?) = §°. This is a dynamical generalization of the
modified classical Yang—Baxter equation, and it has been verified in [11]t@a) in (1.4)
satisfies it. This equation appears in other contexts as well [27—29] and was recently studied,
for example, in [30-32].

The classical exchange algebra (1.3) is also valid for a compact simple Lie gtqup,
obtained as a real form of a complex simple Lie gra@iflike K = SU(n) Cc SL(n,C) = G).
To see this, leKC C G be a compact real form of a complex simple Lie algefiraOne can

realizekC as

K = span{iHy,, F,, F, |ox € A,a € ) (2.34)
with
F; = al(Ey — E_y) F} = lila|(E, + E_y) (2.35)

whereH,, (a; € A), E+, (@ € ®*) form a Chevalley basis @f corresponding to the set of
simple roots,A, and positive rootsp* (see, e.g., [33]). |4 is now a regular domain in the
Cartan subalgebra @f, we have

Asw=it=i) t°H, with ¢ e R. (2.36)
k

Also using that caty) = icoth(iy), R(w) in (1.4) can be rewritten as

R(it) = Y ilef®coth(3ia(r))Es AN E_o =3 Y cot(3a())Fy AF,. (2.37)

aed* aed*

This means that ifo = iz, then ther-matrix on the right-hand side of (1.3) lies o ® K.
Therefore, equation (1.3) with (1.4) can be consistently applied 4mlued Bloch waves.

This can be shown to be the correct result in the compact case by deriving the exchange
algebra similarly as above starting witf;., . However, the free-field realizations discussed
subsequently are valid only in the case of a complex Lie algebra and its normal real form.
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3. Generalized Wakimoto realizations

At the classical level the generalized Wakimoto realizations of the current algebra are given
by certain Poisson maps

W (Go)t x T*G+ — (G):. (3.1)
Here@): denotes the space Gfvalued currents,
©@f ={J e C®R,9) | J(x +27) = J(x)} (3.2)

equipped with the Poisson bracket in (1.6). The other notations are explained below. By
elaborating the idea outlined in [26], we will then prove thatcan be lifted to a Poisson (in
fact, symplectic) map

W Mgl%ch 2 T*(~;+ - MBGIoch (3-3)

which gives a realization of;-valued Bloch waves in terms @fo-valued Bloch waves and
free fields.

LetG = ) ,.; G» be an integral gradation of. Defineg, := @,-0G,, G- ‘= B, <0G-
Denote byGo+ C G the connected subgroups correspondingde. One can associate a
mapW (3.1) with the parabolic subalgeb¢é. + Go) C G as follows. One of the constituents
is the space

(Go)! = {io € C®(R, Go) | io(x +27) = ig(x)} (3.4)
with the Poisson bracket
{Tr(teio) (x), Tr(tiio) (y)} = Tr([t. t1]io) (x)8(x — y) + & Tr(te;)8'(x — ) (3.5)

wherer, denotes a basis @k and Tr is the restriction of the scalgr productdpfo Gyg. To
describe the other factor in (3.1), consider the manifalfdsand G_ whose elements are
smooth, 2 -periodic functions ofR with values inG. andg_, respectively. By means of left
translations, identify the cotangent bundlesf as

T*6+ = 5+ X fg\; = {(7’]+, lf) | N+ € 6+, i_ € ’g\‘,} (36)

The canonical symplectic form di*G. is given by

2
Qreg, =—d / dx Tr(i-ny* dn.) (3.7)
0

and the corresponding Poisson brackets are encoded by

{Tr(Vei_)(x), Tr(VEi)(») = Tr((V*, VFLiZ)(x) 8(x — y)

(3.8)
{Tr(V¥i)(x), n+(M} = n+ () VE3(x — y) {n+(x) ()} =0
whereV* is a basis ofj,. The mapW is defined by the formula
W (Go); x T*Gu 3 (io, 1+, i-) > J = nalio — i)+t € @) (3.9)

One can verify [25] that this is a Poisson map, i.e. the Poisson brackietrofl.6) follows
from the Poisson brackets of the constitugigsn., i_).
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Our purpose now is to complete the construction of the following commutative diagram:

W

Mgl%chXT*G’f = MGoen
Doxid, I (3.10)

G x T*G+ - (@)
The mapD operates according 10 : b — J = kb'b~%. MS? . is the space ofo-valued
Bloch waves with regular, diagonal monodromy,
MG = (0 € C®(R, Go) | nox +21) = no(x)e”, w € A C H) (3.11)

with the symplectic form

2
Qo) = — 3k i dx Tr (ng *dno) A (ng* dno) — 3k Tr ((ng > dno)(0) A dw).  (3.12)

Since the same domais is used in (2.3) and (3.1]~)\/tg|?)ch is a symplectic submanifold of
MGoen- The mapDo sendso to io = knyig™ € (Go):. We have seen that the simple arrows
in (3.10) are Poisson maps. The formula of the missing map

WM X T*Gs 3 (10, 0+, i) —> b € MGoen (3.13)
can be found from the equatidho W=Wo (Dg x id), which requires that
kb'b™ = ne(emgngt — ionit + et (3.14)

A solution forb exists that admits a generalized Gauss decomposition. In fact,

b(x) = bi(x)bo(x)b_(x) with by o(x) € Gio (3.15)
is a solution of (3.14) if
by =14 bo = 1o and kb b=t = —ngti_no. (3.16)

The general solution of the differential equation&arcan be written in terms of the particular
solutions” defined byb?(0) = 1 asb_(x) = b¥(x)S with an arbitraryS € G_. (Note
thatb? (x) is nothing but the path-ordered exponential integral—@;ﬁli,no//c over [0, x].)
The constanf = b_(0) has to be determined from the condition thahould have diagonal
monodromy. One finds thathas diagonal monodromy, indeed it satisfiés+27) = b(x)e”,

if and only if

e “se’ = bl 2r)s. (3.17)

Inspecting this equation grade by grade using a parametrizétiere’, s € G_ and the fact
thatw € A, it is not difficult to see that it has a unique solution fors a function ofv and
b? (27). Determinings in the above manner, we now define the map

WM X T*Ge 3 (10, Nsr i) —> b = nanob” S € Moen (3.18)

which makes the diagram in (3.10) commutative. R
The main result of this paper is the following statemehe mapW defined in (3.18) is
symplectic, that is,

(W* Qi) (N0, 1, i) = Qecn(b = ninob” ) = Qe (n0) + R, (04 i), (3.19)
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To prove this, let us restrict the symplectic fo;*,, in (2.4) to the domain of§, .,
whose elements are decomposable in the form

b = bybob_ with bos € CP(R, Go.1) (3.20)

bi(x +21) = bi(x) bo(x + 27) = bo(x)€” b_(x+2r)=€e“b_(x)6. (3.21)

A straightforward calculation that uses partial integration and standard properties of the trace
yields that in this domain

27
Qpacn(b) = —3k fo dx Tr (bgt dbo A (gt dbo)’ + 2(bob”_b=*by ™) (b7t dby A by dby))

27
+ic f dx Tr (bob_ (b=  db_)'b=*by* A by dbs
0

+[dbo by *, bob”_b="by*] A bt dby)
— 3k Tr (b dbo) (0) A dw) — 2k Tr ((b=1bg (b5t dbs)bob-) (0) A dw)

— L [Tr (b= db_ A b= by (b5  dba)bob ) ]2 . (3.22)

The last two terms cancel, and also combining the other terms we obtain

21
Qpiacn(d) = =1k A dx Tr (b dbo) A (b dbo) — i Tr ((by* dbo) (0) A dw)

2
—d [ dx Tr ((—«bob b= by )bt dbs).
0
The definition ofW says that the image fio, 7+, i) € MS2. X T*G+isb € MG, Which
has the form (3.20) witlby = no, b+ = n+ andb_ specified by the monodromy condition
in (3.21) together With—xnobLbilngl = i_. Taking this into account, the last equation
immediately implies that

21
(W* Qo) (10, 0+, i) = Qg (o) — d | Tr(i_ni*dn) (3.23)

as required by (3.19).

Since a symplectic map is always a Poisson map as vVTéIIprovides us with a
realization of the monodromy-dependent exchange algebra (1.3) 6ftladued Bloch waves
in terms of the analogous exchange algebra of(égesalued Bloch waves and the Poisson
algebra ofT*G. given by (3.8). Of courseT*G. can also be parametrized by canonical
free fields. For this, consider some global coordinat¢son G, and define the matrix
Nog(q) = Tr(Vanitan./0q%), whereVy is a basis ofG_ dual to the basi&’* of G,. By
introducing Zr-periodic canonical free fieldg* (x), ps(y),

{g°(x), ps(N)} = &5 {g“(), 4" M} = {pa(®), pp(»)} =0 (3.24)
the Poisson brackets in (3.8) are realizedhbgc) = n+(¢(x)) and
i) ==Y NHq)psVe (3.25)

op
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wherebyQ,.z = fOZ” dx (dp, A dg%). The mapv’[7 gives a true free-field realization in the
principal case, for whiclgy = H is Abelian. In this caseg is the exponential of &-valued
free scalar field (x), i.e.no(x) = e¥™ with W(x + 27) = ¥ (x) + w and

(Tr(H W) (x), Tr(H W) ()} = % Tr(HH)) sign(y — x) for O<x,y<2r. (3.26)

For G = SL(2) the Wakimoto realization of Bloch waves was already described in [7, 15] and
some other special cases can be found in [24]. These results are in agreement with our general
construction of the map’ in (3.18).
Finally, we illustrate the formula in (3.18) by a series of simple examples for the group
G = SL(n) (either real or complex). The parabolic subalgebrag 6f) are associated with
the partitions of:, and we consider the two-block cases (the Mian (3.1) is described in
these cases in [25]). That is to say, we let the underlying integral gradati®n=0f/(n) be
defined by the eigenvalues of @dwith a diagonal matrix

1
0=- diag(nzl,ll, —nllnz) n=nq+no. (3.27)
n

In this casej.. are Abelian subalgebras, which leads to a simplification of the formulae. In
particular, we can introduce the convenient parametrizations

— 1"1 q s 0n1 0
N+ = |: 0 1n2i| i = [ - Onz] (3.28)
whereg (x) andp(x) areny x ny andny x n; matrices, whose entries satisfy
{Qub(x)a pcd(y)} = (Sad(sbca(x - Y) (329)
In terms of the parametrizations
_ Nu O P __ 1”1 O
=t 0] w[ 0] @
the solution of the differential equation in (3.16) is then found to be
1/ _
B(x) = ;/0 dy (n; pnu) ). (3.31)
Furthermore, if we now denote
S = |:1"1 0 ] w = diag(w1, wy, ..., w,) (3.32)
o 1,

then equation (3.17) is explicitly solved as
Bab(zn)

= 1<a< 1<b<nyg. 3.33
explwp — Waan,) — 1 a5 nl ( )

Oab

Combining these equations, (3.18) yields a realization ofSthé:)-valued Bloch waveé in
terms of the fieldg, p andng. By subsequently using a similar Wakimoto realizationfgr
and so on, one can iteratively build up a complete free-field realization bifcidentally,nq
can be written in the alternative form

— Q¢ 77'4 0
where &¢%) 7, (x) and7,(x) are U(1)-, SL(n1)- and SL(n,)-valued independent Bloch
waves.
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The Wakimoto realizations of the affine KM algebras in generalized Fock spaces, at the
level of vertex algebras as opposed to the above Poisson algebras, have many applications
in conformal field theory [2, 22, 23]. An explicit formula for such realizations of the current
J was derived in [25] by quantizing the expression (3.9). It would be very interesting to
also quantize (3.18). The exchange algebra of the resulting vertex operators should contain
the quantized version of thematrix R(w) which has been constructed recently for all Lie
algebras in a universal manner [34]. Another open problemis to find an analogue of the rather
simple construction of the Wakimoto realizations presented here and in [25] for the case of
g-deformed affine KM algebras. We hope to return to these questions in the future.
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